US009430297B2

United States Patent

(12) 10y Patent No.: US 9,430,297 B2
Thai et al. 45) Date of Patent: Aug. 30,2016
(54) LOAD BALANCING OF ADAPTERS ON A 6,587,866 B1* 7/2003 Modietal. ... 718/105
MULTI-ADAPTER NODE 6,631,422 B1* 10/2003 Althaus et al. 709/250
6,658,018 B1* 12/2003 Tran et al. 370/465
. . . 7,480,706 B1* 1/2009 Hooper et al. 709/223
(75) Inventors: Hung Q. That, Bronx, NY (US); 7,536,693 B1* 52000 Manczak etal. 718/105
Hanhong Xue, Albany, NY (US) 7,787,370 B1* 82010 Aweya et al. .. 370/230
2002/0133594 Al* 9/2002 Syvanne 709/226
(73) Assignee: INTERNATIONAL BUSINESS 2003/0067913 Al* 4/2003 Georgiou et al. 370/389
MACHINES CORPORATION 2005/0038878 Al* 2/2005 McGee et al. 709/220
A k. NY (US ’ 2005/0044227 Al* 2/2005 Haugh et al. 709/226
Imonk, (Us) 2005/0154860 Al* 7/2005 Arimilli et al. . . 7127216
)) o) 2005/0210321 Al* 9/2005 Baietal ..ccoooeomoorneren. 714/13
(*) Notice: Subject to any disclaimer, the term of this 2006/0112032 Al* 5/2006 Bakke et al. 706/16
patent is extended or adjusted under 35 2006/0146821 Al* 7/2006 Singh et al. 370/390
U.S.C. 154(b) by 1539 days. 2006/0203846 Al* 9/2006 Davis 370/466
2007/0110087 Al1* 5/2007 Abel et al. 370/412
. 2007/0195952 Al* 82007 Singanamala 380/37
(21) Appl. No.: 12/334,624 2008/0040454 AL* 2/2008 Banerjce et al. ... 709/219
. 2008/0195754 Al* 82008 Cuomo et al. 709/238
(22) Filed: Dec. 15, 2008 2008/0256228 Al* 10/2008 Fellenstein GOG6F 9/50
709/223
(65) Prior Publication Data 2008/0285441 Al* 11/2008 Abdulla et al. 370/225
2008/0285472 Al* 11/2008 Abdulla et al. 370/250
US 2010/0153964 Al Jun. 17, 2010 2008/0288620 Al* 11/2008 Goffetal.cccce. 709/223
(51) Int. Cl * cited by examiner
IGIZfli ;‘;gg 888288 Primary Examiner — Philip Chea
GO6F 9/50 (2006.01) Assistant Examiner — Wing Ma
GO6F 9/54 (200601) (74) Attorney, Agent, or Firm — Damion JOSGphS, Esq.;
(52) US.Cl Matthew M. Hulihan, Esq.; Heslin Rothenberg Farley &
CPC oo, GOGF 9/5083 (2013.01); GOGF 9/541 ~ Mesiti PC.
(2013.01)
57 ABSTRACT
(58) Field of Classification Search 7)
CPC ... HO4L 67/1023; GOGF 9/5083; GO6F 9/541 Load balancing of adapters on a multi-adapter node of a
USPC vt 709/250; 370/255 communications environment. A task executing on the node
See application file for complete search history. selects an adapter resource unit to be used as its primary port
for communications. The selection is based on the task’s
56 References Cited identifier, and facilitates a balancing of the load among the
(56) g g
adapter resource units. Using the task’s identifier, an index
U.S. PATENT DOCUMENTS is generated that is used to select a particular adapter
6078957 A * 62000 Adel ¢ al 209/204 resource unit from a list of adapter resource units assigned
6220538 BL* 52001 MceI:nItnin:: Zt ?11. """"""" 715/734 to the task. The generation of the index is efficient and
6,381,218 Bl* 4/2002 Mclntyre et al. 370/245 predictable.
6,470,389 B1* 10/2002 Chung et al. 709/227
6,567,377 B1* 5/2003 Vepa et al.c.......... 370/230 21 Claims, 3 Drawing Sheets

REVERSE ORDER
ASSIGNMENT TO
OBTAIN PORT

216

U.S. Patent Aug. 30, 2016 Sheet 1 of 3 US 9,430,297 B2
102-——\
NODE
100 sz
106-w NODE
ADAPTERS | 104
A
D
SWITCH é
102 FABRIC o T
- ;
NODE R
S
A \
d 16—
P
T
E
R
S
-
106 FIG. 1A
106
ADAPTER
RESOURCE RESOURCE | | RESOURCE
UNIT UNIT UNIT
RESOURCE RESOURCE
UNIT UNIT | T~120
RESOURCE RESOURCE
UNIT UNIT

FIG. 1B

U.S. Patent Aug. 30, 2016 Sheet 2 of 3 US 9,430,297 B2

(START)
Y

PROVIDE TASK ID AND # PORTS " \200

i

SET PORT =0 7202

¢

SET BLOCK = ID / # PORTS |~ 204

¢

SET ORDER =0 206

¢

XOR BITS IN BLOCK

TO OBTAIN ORDER | 208
UPDATE PORT 210
212 r—214
ORDER = 0 >YES RIECTDLF;?N
NO

REVERSE ORDER
216" ASSIGNMENT TO
OBTAIN PORT

FIG. 2

U.S. Patent Aug. 30, 2016 Sheet 3 of 3 US 9,430,297 B2

COMPUTER
PROGRAM
PRODUCT

300

(304

PROGRAM
CODE LOGIC

COMPUTER
READABLE
MEDIUM
302

FIG. 3

US 9,430,297 B2

1
LOAD BALANCING OF ADAPTERS ON A
MULTI-ADAPTER NODE

This invention was made with Government support under
Agreement No. HR0011-07-9-0002 awarded by DARPA.
The Government has certain rights in the invention.

TECHNICAL FIELD

This invention relates, in general, to improving perfor-
mance within a communications environment, and in par-
ticular, to performing load balancing among adapters on a
multi-adapter node of the communications environment.

BACKGROUND OF THE INVENTION

In an effort to provide reliability, redundancy and
improvement of aggregate bandwidth within a communica-
tions environment, multiple adapters are installed on the
nodes of the environment. The adapters are used for inter-
connection of nodes, storage and communications networks.
Each adapter on a node includes a plurality of adapter
resource units (i.e., portions of adapter memory; ak.a.,
ports) that are assignable to tasks executing on that node.

A task in a message-passing job is allocated with a fixed
set of adapter resource units, identified by an adapter’s id
and its logical port number, to send and receive data. It is
currently the design choice of the resource scheduler in the
communications stack that the adapter resource units for
each task be distributed across all available adapters on the
node for data striping, reliability and optimization of aggre-
gate bandwidth. However, in order to achieve optimal aggre-
gate bandwidth for all tasks running on the same node, each
task must choose a single one of the allocated adapter
resource units to use as its primary port to send FIFO (first
in, first out) data. This design choice has proven to present
a problem with balancing loads on the adapters/ports.

Sub-optimal choices from individual tasks running on the
same node can result in a heavy load on some adapters/ports
and less load on others, since some relatively large number
of tasks on the same node might select an adapter resource
unit that happens to be on one particular adapter resulting in
a heavy load on that one particular adapter and inefficient
utilization of other adapters. This compromises the goal of
achieving good aggregate performance.

SUMMARY OF THE INVENTION

Based on the foregoing, a need exists for a capability that
facilitates load balancing among adapters of a multi-adapter
node. A need exists for a capability that enables tasks
running on the same node to efficiently and predictably
select an adapter resource unit from a plurality of adapter
resource units. A need exists for a capability that enables
tasks running on the same node to efficiently and predictably
select an adapter resource unit to use as its primary port,
such that the load among the adapters is balanced, particu-
larly as it pertains to selection of primary ports.

The shortcomings of the prior art are overcome and
additional advantages are provided through the provision of
a method of facilitating load balancing in a communications
environment. The method includes, for instance, selecting,
by a task executing on a node of the communications
environment, an adapter resource unit from a plurality of
adapter resource units assigned to that task, the selecting
performing one or more calculations using an identifier of
the task to obtain a selection indicator to be used in selecting

10

15

20

25

30

35

40

45

50

55

60

65

2

the adapter resource unit for the task, wherein the selection
indicator obtained from performing the one or more calcu-
lations is predictable for the task; and using by the task the
selected adapter resource unit as its primary port for sending
data, and wherein the selecting facilitates a balancing of the
load across adapter resources of the node.

Systems and program products relating to one or more
aspects of the present invention are also described and
claimed herein. Further, services relating to one or more
aspects of the present invention are also described and may
be claimed herein.

Additional features and advantages are realized through
the techniques of the present invention. Other embodiments
and aspects of the invention are described in detail herein
and are considered a part of the claimed invention.

BRIEF DESCRIPTION OF THE DRAWINGS

One or more aspects of the present invention are particu-
larly pointed out and distinctly claimed as examples in the
claims at the conclusion of the specification. The foregoing
and other objects, features, and advantages of the invention
are apparent from the following detailed description taken in
conjunction with the accompanying drawings in which:

FIG. 1A depicts one embodiment of a communications
environment to incorporate and use one or more aspects of
the present invention;

FIG. 1B depicts one example of an adapter of the com-
munications environment of FIG. 1A;

FIG. 2 depicts one embodiment of the logic associated
with performing load balancing among a plurality of adapt-
ers of a node, in accordance with an aspect of the present
invention; and

FIG. 3 depicts one embodiment of a computer program
product incorporating one or more aspects of the present
invention.

DETAILED DESCRIPTION OF THE
INVENTION

In accordance with an aspect of the present invention, a
capability is provided for performing load balancing within
a communications environment. In particular, a capability is
provided that enables each task of a plurality of tasks
running on one node to efficiently and predictably select an
adapter resource unit to use as its primary port (i.e., primary
logical port). The adapter resource unit is selected for a task
from an indexed list of allocated adapter resources specific
for that task. The selection is based on the task identifier, and
is such that the overall workload for the tasks of one job
running on that node is spread across the allocated adapters
in a balanced manner.

One example of a communications environment to incor-
porate and use one or more aspects of the present invention
is described with reference to FIG. 1A. In one example, a
communications environment 100 includes a plurality of
nodes 102 coupled to one another via one or more connec-
tions 104. In this example, each of the nodes is a pSeries®
server offered by International Business Machines Corpo-
ration. However, in further examples, the nodes can be other
than pSeries® servers. Further, in this example, each node
includes a plurality of adapters 106, such as Infiniband
adapters. The adapters are used for interconnection, includ-
ing the interconnection of nodes, storage and communica-
tions networks. In this example, the adapters are connected
to a switch fabric 104; however, in other examples, they may
be connected to other types of connections. Further, adapters

US 9,430,297 B2

3

other than Infiniband adapters may be used. pSeries® is a
registered trademark of International Business Machines
Corporation, Armonk, N.Y. Other names used herein may be
registered trademarks, trademarks or product names of Inter-
national Business Machines Corporation or other compa-
nies.

Each adapter 106 includes a plurality of adapter resource
units 120 (FIG. 1B) that are assignable to tasks executing
within the node. In one example, each task selects a resource
unit to use as its primary port. In accordance with an aspect
of'the present invention, this selection is performed such that
the load across the adapter resource units is balanced. One
embodiment of the logic associated with performing this
balancing is described with reference to FIG. 2. This logic
is performed by each task that is to select a primary port.

Referring to FIG. 2, initially, a task identifier of the task
executing this logic and the number of available ports
(resource units) are provided, STEP 200. The task identifier
is a unique identifier of the task within the node. It is known
locally to the set of tasks running on the node and within the
job. In one example, the identifier is in the range of 0 to n-1,
where n is the number of tasks of the job running on the
node. For example, if there are 16 tasks, the task identifiers
are 0 to 15. The number of ports is the number of pre-
allocated ports spread out on all the adapters. The number of
ports can be any multiple of the number of adapters in the
node. For example, if there are 4 adapters, there may be 8§,
16, etc. ports.

Additionally, a variable referred to as port is set equal to
zero, STEP 202; a variable block is set equal to the identifier
divided by the number of ports, STEP 204; and a variable
order is set equal to zero, STEP 206. In each of these cases,
the initialization is in integer form.

Subsequently, an exclusive OR (XOR) operation is
sequentially performed on the bits in block to obtain a value
for order, STEP 208. For instance, the first binary number
(e.g., 0 or 1) in block is exclusively OR’d with the second
binary number in block providing a result. The result is then
exclusively OR’d with the third number in block providing
a next result; the next result is exclusively OR’d with the
next number, and so forth, until all of the binary bits of block
have been XOR’d. The resulting value is order.

Additionally, port is updated, as follows: (identifier+1)
mod number of ports, where mod is the modulo operation,
STEP 210. Thereafter, a determination is made as to whether
order is equal to zero, INQUIRY 212. If order is equal to
zero, then the port value determined above is returned, STEP
214. However, if order is not equal to zero, then the order
assignment is reversed to obtain a value for port, STEP 216.
For example, port=number of ports—1-port. Port is then
returned, STEP 214.

One embodiment of pseudo-code for this process is as
follows:

int
_ get_ideal_ port(identifier, num__ ports)

int port=0;
//identifier: sequential ordinary number of current task,
/ known locally on node, within the job
{
int block=identifier/num_ ports;
int order = 0;
//xor all bits in block -- a recursive pattern generator
while (block) {
orderﬁ=(block & 1);
block >>=1;

10

15

20

25

30

45

50

55

60

65

4

-continued

port=(identifier + 1) % num__ports;
if (order) {
//reverse order assignment
port=num__ports — 1 — port;
¥
¥

return port;

}

The value, port, that is returned is an index generated
specifically for the particular task identified by the task id.
It is used to select an adapter resource unit from a list of
adapter resources previously allocated to the task. The
selected adapter resource unit is to be used as the task’s
primary port. For instance, assume a node has 4 adapters and
each task is pre-allocated 2 adapter resource units per
adapter, for a total of num_ports=8. Each task is provided,
by a resource scheduler, such as Loadl.eveler® offered by
International Business Machines Corporation, a pre-allo-
cated list of available resource units for that task. Load-
Leveler® is a registered trademark of International Business
Machines Corporation.

In this example, Task O is assigned:

<adapter3:unit0>, <adapter2:unit0>, <adapterl:unit0>, adapterQ:unit0>,
<adapter3:unitl>, <adapter2:unitl>, <adapterl:unitl>, <adapterO:unitl>.

Similarly, Task 1 is provided:

<adapter3:unit2>, <adapter2:unit2>, <adapterl:unit2>, adapterQ:unit2>,
<adapter3:unit3>, <adapter2:unit3>, <adapterl:unit3>, <adapterO:unit3>;
etc.

Note that the order of the adapter numbers remains
unchanged between lists and between iterations within each
list.

After executing the process with its own task identifier
and num_ports=8, Task 0 generates port=0; Task 1 generates
port=1; etc. The port value is used as an index into that task’s
pre-allocated list of resource units. Thus, Task 0 will choose
index 0 in its list <adapter3:unit0>, as its primary port; Task
1 will choose index 1 in its list <adapter2:unit2>; . . . Task
30 will choose index 6 in its list <adapterl:unit61>; and Task
31 will choose index 7 in its list, <adapterO:unit63>.

As a result, the available adapters are used evenly (as
evenly as possible given the configuration and number of
tasks) between the tasks on the node. Each task runs the
process independently, and by utilizing the unique task
identifier (unique within a job on a node), each is provided
a unique index to use. This index is used to select a primary
port for the task.

Further details regarding one or more aspects of the
present invention are provided below, with reference to the
following example application:

Assuming the identifiers of the tasks on the same node are
ty, t;, &, . . ., sorted in ascending order, and each task t, has
two adapter resource units w',, w'; to choose from. The
logic, which is independently executed by the tasks on the
same node, generates the same sequence f as f{i)=sequen-
tially XOR of all the bits 0of'1,1=0,1,2, .. ., and task t, chooses
adapter resource unit w,, to use as its primary port. This is
further explained below.

US 9,430,297 B2

5

The first 16 elements of the f sequence are given as
follows:

6

Described in detail herein is a technique that enables each
task (or a subset thereof) of a job (e.g., a message passing

o 1 2 3 4 5 6 7 8 9

fii o 1.1 0 1 0 0 1 1 0 O 1 0 1

Now assume that w’, are on adapter 1 for all i and w’; are
on adapter 2 for all i, which is one valid scenario, then tasks
19, 13, ts, - . . Will be using adapter 1 and tasks t;, t,, t,, . . .
will be using adapter 2. As long as the number of tasks on
the node is even, the assignment of tasks to adapters is
balanced. Further, if there is only one adapter with 2 links
(i.e., physical ports), but w', are on the first link and w’, are
on the second link, the assignment is still balanced on the
two links. (The same sequence can produce balanced assign-
ments for more scenarios, like four links in two networks.)
Thus, one or more aspects of the present invention can be
used to select a logical port, or a physical port assuming the
logical ports are distributed in a balanced manner.

If there are m (m=2) adapter resource units to choose
from, the f sequence is used to produce more generalized F
sequences:

Js J®=0

F’”(i'm+j)={m—1—j, fiy=1

}forj:O,l,...m—l.

One embodiment of the pseudo-code for this generalized
F sequence is described above.
Here are examples of F,, F,, and Fy. It can be verified that

F()=1).

10

15

20

25

30

job) executing on a node to independently choose an adapter
resource unit to be used as its primary port for communi-
cations (e.g., to send data). This technique improves aggre-
gate bandwidth and balances usage of the available adapters
on the system. Also, given that the other factors of the
message passing job are constant, the technique can be used
to reproduce the same index, thus creating a predictable
behavior of any job on any network configuration of the
system.

In addition to the above, one or more aspects of the
present invention can be provided, offered, deployed, man-
aged, serviced, etc. by a service provider who offers man-
agement of customer environments. For instance, the service
provider can create, maintain, support, etc. computer code
and/or a computer infrastructure that performs one or more
aspects of the present invention for one or more customers.
In return, the service provider can receive payment from the
customer under a subscription and/or fee agreement, as
examples. Additionally or alternatively, the service provider
can receive payment from the sale of advertising content to
one or more third parties.

In one aspect of the present invention, an application can
be deployed for performing one or more aspects of the
present invention. As one example, the deploying of an
application comprises providing computer infrastructure
operable to perform one or more aspects of the present
invention.

13

FBG) 0 1 1 0o 1 0 0 1 1 0 0 1 0 1
Fa)
Fe) O 1 2 3 4 5 6 7 7 6 5 4 3 2

<
—_
Ko
w
w
Ko
—_
<
w
Ko
—_
<
<
—_

It can be observed from the above table that, for example,
if there are eight adapter resource units each from a different
network/link, the F; sequence will produce a balanced
assignment as long as the number of tasks on a node is a
multiple of 8.

This logic is applicable on any network configuration and
adapter capacity, i.e., number of ports per adapters, or
number of adapters per node. The format of the list of
adapter resource units allocated to each task is consistent for
all tasks running on the same node.

It can also be verified that each task i will choose a
corresponding adapter resource unit in the list of allocated
resources in a consistent and predictable way given its
identifier i, as long as number of units is constant. On the
other hand, by customizing the indexing of the list of adapter
resources units to the job’s specific workload, programmers
of message-passing jobs can benefit from this property to
program the job so that tasks with data intensive responsi-
bilities (as opposed to computing intensive tasks) are allo-
cated to adapter resource units on adapters that are most
capable of transferring data, i.e., more memory, adapter bus
capacity, locality to other resources, etc.

45

50

55

As a further aspect of the present invention, a computing
infrastructure can be deployed comprising integrating com-
puter readable code into a computing system, in which the
code in combination with the computing system is capable
of performing one or more aspects of the present invention.

As yet a further aspect of the present invention, a process
for integrating computing infrastructure comprising inte-
grating computer readable code into a computer system may
be provided. The computer system comprises a computer
usable medium, in which the computer medium comprises
one or more aspects of the present invention. The code in
combination with the computer system is capable of per-
forming one or more aspects of the present invention.

One or more aspects of the present invention can be
included in an article of manufacture (e.g., one or more
computer program products) having, for instance, computer
readable media. The media has therein, for instance, com-
puter readable program code means or logic (e.g., instruc-
tions, code, commands, etc.) to provide and facilitate the
capabilities of the present invention. The article of manu-
facture can be included as a part of a computer system or
sold separately.

US 9,430,297 B2

7

One example of an article of manufacture or a computer
program product incorporating one or more aspects of the
present invention is described with reference to FIG. 3. A
computer program product 300 includes, for instance, one or
more computer readable media 302 to store computer read-
able program code means or logic 304 thereon to provide
and facilitate one or more aspects of the present invention.
The medium can be an electronic, magnetic, optical, elec-
tromagnetic, infrared, or semiconductor system (or appara-
tus or device) or a propagation medium. Examples of a
computer readable medium include a semiconductor or solid
state memory, magnetic tape, a removable computer dis-
kette, a random access memory (RAM), a read-only memory
(ROM), a rigid magnetic disk and an optical disk. Examples
of optical disks include compact disk-read only memory
(CD-ROM), compact disk-read/write (CD-R/W) and DVD.

A sequence of program instructions or a logical assembly
of one or more interrelated modules defined by one or more
computer readable program code means or logic direct the
performance of one or more aspects of the present invention.

Advantageously, a capability is provided that enables a
task executing on a node to independently and efficiently
choose a primary port to be used in communications. The
logic of the capability is repeatable and predictable in that
each time the task executes the logic, it will receive the same
index (assuming the configuration remains constant), which
is used to select a port. This technique provides load
balancing among the adapters of the nodes by controlling
which port is selected by a particular task. Tasks running on
the same node efficiently and predictably select an adapter
resource unit from an indexed list of allocated adapter
resources based on their specific task identifiers, so that the
overall workload for all tasks of one job running on that
node is spread across the allocated adapters in a balanced
manner.

Although various embodiments are described above,
these are only examples. For example, communications
environments other than those described herein may include
and use one or more aspects of the present invention. For
example, nodes other than pSeries® servers may be used
and the adapters may be other than Infiniband. Further, the
connections can be other than switch fabric connections.
Many other variations may also exist. Additionally, more or
less adapters and adapter resource units than described
herein may be used. Further, a resource scheduler other than
LoadLeveler® may be used to pre-allocate the resource
units. As a further example, other types of identifiers than
those described herein may be used. Many other variations
also exist.

Further, other types of computing environments can ben-
efit from one or more aspects of the present invention. As an
example, an environment may include an emulator (e.g.,
software or other emulation mechanisms), in which a par-
ticular architecture (including, for instance, instruction
execution, architected functions, such as address translation,
and architected registers) or a subset thereof is emulated
(e.g., on a native computer system having a processor and
memory). In such an environment, one or more emulation
functions of the emulator can implement one or more
aspects of the present invention, even though a computer
executing the emulator may have a different architecture
than the capabilities being emulated. As one example, in
emulation mode, the specific instruction or operation being
emulated is decoded, and an appropriate emulation function
is built to implement the individual instruction or operation.

In an emulation environment, a host computer includes,
for instance, a memory to store instructions and data; an

10

15

20

25

30

35

40

45

50

55

60

65

8

instruction fetch unit to fetch instructions from memory and
to optionally, provide local buffering for the fetched instruc-
tion; an instruction decode unit to receive the instruction
fetch unit and to determine the type of instructions that have
been fetched; and an instruction execution unit to execute
the instructions. Execution may include loading data into a
register from memory; storing data back to memory from a
register; or performing some type of arithmetic or logical
operation, as determined by the decode unit. In one example,
each unit is implemented in software. For instance, the
operations being performed by the units are implemented as
one or more subroutines within emulator software.

Further, a data processing system suitable for storing
and/or executing program code is usable that includes at
least one processor coupled directly or indirectly to memory
elements through a system bus. The memory elements
include, for instance, local memory employed during actual
execution of the program code, bulk storage, and cache
memory which provide temporary storage of at least some
program code in order to reduce the number of times code
must be retrieved from bulk storage during execution.

Input/Output or I/O devices (including, but not limited to,
keyboards, displays, pointing devices, DASD, tape, CDs,
DVDs, thumb drives and other memory media, etc.) can be
coupled to the system either directly or through intervening
1/O controllers. Network adapters may also be coupled to the
system to enable the data processing system to become
coupled to other data processing systems or remote printers
or storage devices through intervening private or public
networks. Modems, cable modems, and Ethernet cards are
just a few of the available types of network adapters.

The capabilities of one or more aspects of the present
invention can be implemented in software, firmware, hard-
ware, or some combination thereof. At least one program
storage device readable by a machine embodying at least
one program of instructions executable by the machine to
perform the capabilities of the present invention can be
provided.

The flow diagrams depicted herein are just examples.
There may be many variations to these diagrams or the steps
(or operations) described therein without departing from the
spirit of the invention. For instance, the steps may be
performed in a differing order, or steps may be added,
deleted, or modified. All of these variations are considered
a part of the claimed invention.

Although embodiments have been depicted and described
in detail herein, it will be apparent to those skilled in the
relevant art that various modifications, additions, substitu-
tions and the like can be made without departing from the
spirit of the invention and these are therefore considered to
be within the scope of the invention as defined in the
following claims.

What is claimed is:

1. A method of facilitating load balancing in a commu-
nications environment, said method comprising:

selecting, by an executing task of a job executing on a

node of the communications environment, an adapter
resource unit from a plurality of adapter resource units
assigned to that task, the plurality of adapter resource
units being individually available for selection by the
task for use by the task as its primary port, and the
plurality of adapter resource units being of one or more
adapters of the node, said selecting comprising the task
performing one or more calculations using an identifier
of the task to obtain a selection indicator to be used in
selecting the adapter resource unit for the task, the one
or more calculations comprising setting the selection

US 9,430,297 B2

9

indicator based on a modulo operation using the iden-
tifier of the task, wherein the identifier of the task
uniquely identifies the task within the job, and wherein
the selection indicator obtained from performing the
one or more calculations is predictable for the task; and

using, by the task of the job, the selected adapter resource
unit as its primary port for sending data, and wherein
the selecting facilitates a balancing of the load across
adapter resources of the node.

2. The method of claim 1, wherein the selecting is
independently performed by the task irrespective of selec-
tions by other tasks executing on the node, and wherein the
primary port is a logical port.

3. The method of claim 1, wherein the selection indicator
is an index into a list of the plurality of adapter resource
units, wherein the adapter resource unit at the indexed
location is the selected adapter resource unit to be used as
the primary port for the task.

4. The method of claim 1, wherein a list of the plurality
of adapter resource units assigned to the task is arranged in
a particular format, and the format of the list of the plurality
of adapter resource units allocated to each task of a job
executing on the node is consistent.

5. The method of claim 1, wherein the selecting com-
prises:

setting a variable, block, equal to an integer operation of

the identifier divided by a number of adapter resource
units of the node;

performing an operation on block to obtain a result; and

determining the selection indicator based on the result.

6. The method of claim 5, wherein the operation per-
formed on block comprises a sequential exclusive-OR
operation on the bits of block.

7. The method of claim 6, wherein the determining further
comprises:

setting the selection indicator to (the identifier +1) modulo

the number of adapter resource units to obtain a set
selection indicator;

using the set selection indicator, as the selection indicator,

in response to the result being one value; and
resetting the selection indicator to the number of adapter
resource units minus 1 minus the set selection indicator,
in response to the result being another value, and using
the reset selection indicator as the selection indicator.

8. The method of claim 7, wherein the one value is zero
and the another value is one.

9. The method of claim 1, wherein the identifier is a
unique number between 0 to n-1, where n is the number of
tasks of a job executing on the node.

10. The method of claim 1, wherein the selecting is
performed by each task of the node that is to select a primary
port.

11. A computer system for facilitating load balancing in a
communications environment, said computer system com-
prising:

a memory; and

a processor in communications with the memory, wherein

the computer system is configured to perform a

method, said method comprising:

selecting, by an executing task of a job executing on a
node of the communications environment, an adapter
resource unit from a plurality of adapter resource
units assigned to that task, the plurality of adapter
resource units being individually available for selec-
tion by the task for use by the task as its primary port,
and the plurality of adapter resource units being of
one or more adapters of the node, said selecting

15

20

25

30

35

40

45

50

55

10

comprising the task performing one or more calcu-
lations using an identifier of the task to obtain a
selection indicator to be used in selecting the adapter
resource unit for the task, the one or more calcula-
tions comprising setting the selection indicator based
on a modulo operation using the identifier of the task,
wherein the identifier of the task uniquely identifies
the task within the job, and wherein the selection
indicator obtained from performing the one or more
calculations is predictable for the task; and

using, by the task of the job, the selected adapter
resource unit as its primary port for sending data, and
wherein the selecting facilitates a balancing of the
load across adapter resources of the node.

12. The computer system of claim 11, wherein the selec-
tion indicator is an index into a list of the plurality of adapter
resource units, wherein the adapter resource unit at the
indexed location is the selected adapter resource unit to be
used as the primary port for the task, and wherein the
primary port is a logical port.

13. The computer system of claim 11, wherein a list of the
plurality of adapter resource units assigned to the task is
arranged in a particular format, and the format of the list of
the plurality of adapter resource units allocated to each task
of a job executing on the node is consistent.

14. The computer system of claim 11, wherein the select-
ing comprises:

setting a variable, block, equal to an integer operation of
the identifier divided by a number of adapter resource
units of the node;

performing an operation on block to obtain a result; and

determining the selection indicator based on the result.

15. The computer system of claim 14, wherein the opera-
tion on block comprises a sequential exclusive-OR operation
on the bits of block, and the determining further comprises:

setting the selection indicator to (the identifier +1) modulo
the number of adapter resource units to obtain a set
selection indicator;

using the set selection indicator, as the selection indicator,
in response to the result being one value; and

resetting the selection indicator to the number of adapter
resource units minus 1 minus the set selection indicator,
in response to the result being another value, and using
the reset selection indicator as the selection indicator.

16. A computer program product for facilitating load
balancing in a communications environment, said computer
program product comprising:

a non-transitory computer readable storage medium read-
able by a processor and storing instructions for execu-
tion by the processor for performing a method com-
prising:
selecting, by an executing task of a job executing on a

node of the communications environment, an adapter
resource unit from a plurality of adapter resource
units assigned to that task, the plurality of adapter
resource units being individually available for selec-
tion by the task for use by the task as its primary port,
and the plurality of adapter resource units being of
one or more adapters of the node, said selecting
comprising the task performing one or more calcu-
lations using an identifier of the task to obtain a
selection indicator to be used in selecting the adapter
resource unit for the task, the one or more calcula-
tions comprising setting the selection indicator based
on a modulo operation using the identifier of the task,
wherein the identifier of the task uniquely identifies
the task within the job, and wherein the selection

US 9,430,297 B2

11

indicator obtained from performing the one or more
calculations is predictable for the task; and

using, by the task of the job, the selected adapter
resource unit as its primary port for sending data, and
wherein the selecting facilitates a balancing of the
load across adapter resources of the node.

17. The computer program product of claim 16, wherein
the selection indicator is an index into a list of the plurality
of adapter resource units, wherein the adapter resource unit
at the indexed location is the selected adapter resource unit
to be used as the primary port for the task, and wherein the
primary port is a logical port.

18. The computer program product of claim 16, wherein
a list of the plurality of adapter resource units assigned to the
task is arranged in a particular format, and the format of the
list of the plurality of adapter resource units allocated to each
task of a job executing on the node is consistent.

19. The computer program product of claim 16, wherein
the selecting comprises:

setting a variable, block, equal to an integer operation of

the identifier divided by a number of adapter resource
units of the node;

performing an operation on block to obtain a result; and

determining the selection indicator based on the result.

20. The computer program product of claim 19, wherein
the operation on block comprises a sequential exclusive-OR
operation on the bits of block, and the determining further
comprises:

10

25

12

setting the selection indicator to (the identifier +1) modulo
the number of adapter resource units to obtain a set
selection indicator;

using the set selection indicator, as the selection indicator,
in response to the result being one value; and

resetting the selection indicator to the number of adapter
resource units minus 1 minus the set selection indicator,
in response to the result being another value, and using
the reset selection indicator as the selection indicator.

21. The method of claim 1, wherein the performing the
one or more calculations comprises performing a sequential
exclusive-OR operation on elements of a variable obtained
based on the identifier of the task, wherein the sequential
exclusive-OR operation comprises:

performing an exclusive-OR operation on a first two
sequential elements of the variable to obtain an inter-
mediate result;

updating the intermediate result by performing an exclu-
sive-OR operation on the intermediate result and a next
element of the variable, and storing the result as the
intermediate result; and

repeating the updating the intermediate result for one or
more additional elements of the variable.

#* #* #* #* #*

